3,384 research outputs found

    Discovery of a 6.4 h black hole binary in NGC 4490

    Full text link
    We report on the discovery with Chandra of a strong modulation (~90% pulsed fraction) at ~6.4 h from the source CXOU J123030.3+413853 in the star-forming, low-metallicity spiral galaxy NGC 4490, which is interacting with the irregular companion NGC 4485. This modulation, confirmed also by XMM-Newton observations, is interpreted as the orbital period of a binary system. The spectra from the Chandra and XMM-Newton observations can be described by a power-law model with photon index ~1.5. During these observations, which span from 2000 November to 2008 May, the source showed a long-term luminosity variability by a factor of ~5, between ~2E+38 and 1.1E+39 erg/s (for a distance of 8 Mpc). The maximum X-ray luminosity, exceeding by far the Eddington limit of a neutron star, indicates that the accretor is a black hole. Given the high X-ray luminosity, the short orbital period and the morphology of the orbital light curve, we favour an interpretation of CXOU J123030.3+413853 as a rare high-mass X-ray binary system with a Wolf-Rayet star as a donor, similar to Cyg X-3. This would be the fourth system of this kind known in the local Universe. CXOU J123030.3+413853 can also be considered as a transitional object between high mass X-ray binaries and ultraluminous X-ray sources (ULXs), the study of which may reveal how the properties of persistent black-hole binaries evolve entering the ULX regime.Comment: Fig. 1 in reduced quality; minor changes to match the MNRAS versio

    Ultra-luminous X-ray sources and remnants of massive metal-poor stars

    Full text link
    Massive metal-poor stars might form massive stellar black holes (BHs), with mass 25<=mBH/Msun<=80, via direct collapse. We derive the number of massive BHs (NBH) that are expected to form per galaxy through this mechanism. Such massive BHs might power most of the observed ultra-luminous X-ray sources (ULXs). We select a sample of 64 galaxies with X-ray coverage, measurements of the star formation rate (SFR) and of the metallicity. We find that NBH correlates with the number of observed ULXs per galaxy (NULX) in this sample. We discuss the dependence of our model on the SFR and on the metallicity. The SFR is found to be crucial, consistently with previous studies. The metallicity plays a role in our model, since a lower metallicity enhances the formation of massive BHs. Consistently with our model, the data indicate that there might be an anticorrelation between NULX, normalized to the SFR, and the metallicity. A larger and more homogeneous sample of metallicity measurements is required, in order to confirm our results.Comment: 21 pages, 8 figures, accepted for publication in MNRA

    Ring galaxies from off-centre collisions

    Get PDF
    We investigate the formation of RE galaxies (i.e. of collisional ring galaxies with an empty ring), with N-body/smoothed particle hydrodynamics simulations. The simulations employ a recipe for star formation (SF) and feedback that has been shown to be crucial to produce realistic galaxies in a cosmological context. We show that RE galaxies can form through off-centre collisions (i.e. with a non-zero impact parameter), even for small inclination angles. The ring can be either a complete ring or an arc, depending on the initial conditions (especially on the impact parameter). In our simulations, the nucleus of the target galaxy is displaced from the dynamical centre of the galaxy and is buried within the ring, as a consequence of the off-centre collision. We find that the nucleus is not vertically displaced from the plane of the ring. We study the kinematics of the ring, finding agreement with the predictions by the analytic theory. The SF history of the simulated galaxies indicates that the interaction enhances the SF rate. We compare the results of our simulations with the observations of Arp 147, which is the prototype of RE galaxie

    Ultraluminous X-ray Sources forming in low metallicity natal environments

    Get PDF
    In the last few years multiwavelength observations have boosted our understanding of Ultraluminous X-ray Sources (ULXs). Yet, the most fundamental questions on ULXs still remain to be definitively answered: do they contain stellar or intermediate mass black holes? How do they form? We investigate the possibility that the black holes hosted in ULXs originate from massive (40-120 M⊙M_\odot) stars in low metallicity natal environments. Such black holes have a typical mass in the range ∌30−90M⊙\sim 30-90 M_\odot and may account for the properties of bright (above ∌1040\sim 10^{40} erg s−1^{-1}) ULXs. More than ∌105\sim 10^5 massive black holes might have been generated in this way in the metal poor Cartwheel galaxy during the last 10710^7 years and might power most of the ULXs observed in it. Support to our interpretation comes from NGC 1313 X-2, the first ULX with a tentative identification of the orbital period in the optical band, for which binary evolution calculations show that the system is most likely made by a massive donor dumping matter on a 50−100M⊙50-100 M_\odot black hole.Comment: 4 pages. To appear in the Proceedings of the Conference "X-Ray Astronomy 2009: Present Status, Multiwavelength Approach and Future Perspectives", Bologna, Italy, September 2009, Eds. A. Comastri, M. Cappi, L. Angelini, 2010 AIP (in press)

    A minor merger scenario for the ultraluminous X-ray source ESO 243-49 HLX-1

    Get PDF
    The point-like X-ray source HLX-1 is the brightest known ultraluminous X-ray source and likely the strongest intermediate-mass black hole candidate. HLX-1 is hosted in the S0 galaxy ESO 243-49, but offset with respect to the nucleus, and its optical counterpart was identified with a massive star cluster. In this paper, we study, through N-body/smoothed particle hydrodynamics simulations, the scenario where ESO 243-49 is undergoing (or just underwent) a minor merger with a gas-rich low-mass late-type galaxy. The simulations suggest that the observed star formation rate (SFR) in ESO 243-49 is a consequence of the interaction and that the companion galaxy already underwent the second pericentre passage. We propose that the counterpart of HLX-1 coincides with the nucleus (and possibly with the nuclear star cluster) of the secondary galaxy. We estimate that, if the minor merger scenario is correct, the number density of X-ray sources similar to HLX-1 is ≈10−6 Mpc−

    A ring in a shell: the large-scale 6D structure of the Vela OB2 complex

    Get PDF
    The Vela OB2 association is a group of 10 Myr stars exhibiting a complex spatial and kinematic substructure. The all-sky Gaia DR2 catalogue contains proper motions, parallaxes (a proxy for distance) and photometry that allow us to separate the various components of Vela OB2. We characterise the distribution of the Vela OB2 stars on a large spatial scale, and study its internal kinematics and dynamic history. We make use of Gaia DR2 astrometry and published Gaia-ESO Survey data. We apply an unsupervised classification algorithm to determine groups of stars with common proper motions and parallaxes. We find that the association is made up of a number of small groups, with a total current mass over 2330 Msun. The three-dimensional distribution of these young stars trace the edge of the gas and dust structure known as the IRAS Vela Shell across 180 pc and shows clear signs of expansion. We propose a common history for Vela OB2 and the IRAS Vela Shell. The event that caused the expansion of the shell happened before the Vela OB2 stars formed, imprinted the expansion in the gas the stars formed from, and most likely triggered star formation.Comment: Accepted by A&A (02 November 2018), 13 pages, 9+2 figure

    Periodic signals from the Circinus region: two new cataclysmic variables and the ultraluminous X-ray source candidate GC X-1

    Full text link
    The examination of two 2010 Chandra ACIS exposures of the Circinus galaxy resulted in the discovery of two pulsators: CXO J141430.1-651621 and CXOU J141332.9-651756. We also detected 26-ks pulsations in CG X-1, consistently with previous measures. For ~40 other sources, we obtained limits on periodic modulations. In CXO J141430.1-651621, which is ~2 arcmin outside the Circinus galaxy, we detected signals at 6120(1) s and 64.2(5) ks. In the longest observation, the source showed a flux of ~1.1e-13 erg/cm^2/s (absorbed, 0.5-10 keV) and the spectrum could be described by a power-law with photon index ~1.4. From archival observations, we found that the luminosity is variable by ~50 per cent on time-scales of weeks-years. The two periodicities pin down CXO J141430.1-651621 as a cataclysmic variable of the intermediate polar subtype. The period of CXOU J141332.9-651756 is 6378(3) s. It is located inside the Circinus galaxy, but the low absorption indicates a Galactic foreground object. The flux was ~5e-14 erg/cm^2/s in the Chandra observations and showed ~50 per cent variations on weekly/yearly scales; the spectrum is well fit by a power law ~0.9. These characteristics and the large modulation suggest that CXOU J141332.9-651756 is a magnetic cataclysmic variable, probably a polar. For CG X-1, we show that if the source is in the Circinus galaxy, its properties are consistent with a Wolf-Rayet plus black hole binary. We consider the implications of this for ultraluminous X-ray sources and the prospects of Advanced LIGO and Virgo. In particular, from the current sample of WR-BH systems we estimate an upper limit to the detection rate of stellar BH-BH mergers of ~16 events per yr.Comment: 17 pages, 7 figures, 6 tables; accepted for publication in MNRA

    Dynamics of massive stellar black holes in young star clusters and the displacement of ultra-luminous X-ray sources

    Full text link
    In low-metallicity environments, massive stars might avoid supernova explosion and directly collapse, forming massive (~25-80 solar masses) stellar black holes (MSBHs), at the end of their life. MSBHs, when hosted in young massive clusters, are expected to form binaries and to strongly interact with stars, mainly via three-body encounters. We simulate various realizations of young star clusters hosting MSBHs in hard binaries with massive stars. We show that a large fraction (~44 per cent) of MSBH binaries are ejected on a short timescale (<=10 Myr). The offset of the ejected MSBHs with respect to the parent cluster is consistent with observations of X-ray binaries and ultra-luminous X-ray sources. Furthermore, three-body encounters change the properties of MSBH binaries: the semi-major axis changes by <=50 per cent and the eccentricity of the system generally increases. We shortly discuss the implications of our simulations on the formation of high-mass X-ray binaries hosting MSBHs.Comment: 10 pages, 9 figures, accepted for publication in MNRA
    • 

    corecore